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Observing complexity, seeing simplicity

By Jaroslav Stark

Centre for Nonlinear Dynamics and its Applications, University College London,
Gower Street, London WC1E 6BT, UK

This century has seen the formulation of a number of novel mathematical and com-
putational frameworks for the study, characterization and control of various classes
of complex phenomena. Most of these involve some non-trivial dynamics. In order to
be of genuine use in the real world, it is essential that such theoretical developments
are related to observed data. This paper is concerned with the question of how this
might be achieved. In particular, it investigates how much information about a com-
plex unknown system one can hope to recover from observations. The vast majority
of theoretical analysis assumes that we have an accurate model of a system and that
we know the variables that uniquely determine its state. In principle, the application
of such a theory to real problems requires the simultaneous measurement of all these
variables. This is rarely feasible in practice, where often we will not even know what
the important variables are. All that we may be able to achieve is to make a sequence
of repeated measurements of one or more observables. The relationship between such
observations and the state of the system is often uncertain. It is therefore unclear
how much information about the behaviour of the system we can deduce from such
measurements. It turns out that for a certain class of mathematically idealized sys-
tems it is, in principle, possible to reconstruct the whole system from a sequence of
measurements of just a single observable. As a consequence, we may be able to build
remarkably simple models of apparently complex looking behaviour. We shall outline
the theoretical framework behind this remarkable result, and discuss its limitations
and its generalizations to more realistic systems. Finally, we shall speculate that the
complexity of theoretical models may sometimes outstrip our ability to detect them
in real data.

Keywords: time-series; Takens’ theorem; embedding;
delay reconstruction; prediction; spatio-temporal

1. Introduction

In a certain sense, the problem of complexity has been the fundamental issue of
all the sciences throughout history. Of course, as our understanding of the world
has improved, our notion of what we mean by complex has changed. In particular,
systems whose properties initially seem to lack any rhyme or reason gradually come
to be seen as simpler and simpler as we discover the mechanisms underlying their
behaviour and devise scienti c tools to analyse and ultimately control their operation.
The development of such understanding, and the apparent simpli cation of complex
observations, has been the driving force of most scienti c enquiry.

A good example of this is the  eld of celestial mechanics. Right from the dawn
of the earliest human societies the night sky has inspired scienti c enquiry. Indeed,
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ancient astronomers could probably claim to be the  rst scientists. Through painstak-
ing observation they sought to organize and make sense of the vast number of celestial
objects that at  rst must have appeared beyond all comprehension. In this they were
surprisingly successful, and even 5000 years ago could predict many events, such as
solar and lunar eclipses, and the appearance of some meteor showers and comets with
a signi cant degree of accuracy. Such forecasts were entirely based on the recognition
of speci c patterns in observed data, rather than on any appreciation of fundamental
mechanisms.

As time went on, the requirements for better and better predictions (to a large
extent driven by the practical needs of marine navigation) necessitated the devel-
opment of theoretical frameworks, ultimately leading to the development of both
Newton’s laws of motion and of di¬erential calculus. While in principle these pro-
vided a complete description of the behaviour of, for instance, the Solar System (as
well as supplying the tools and motivation for a substantial part of applied mathe-
matics), they by no means a¬orded a total solution to the problem.

In particular, at the end of the 19th century, Poincaŕe realized that the behaviour
of even just three bodies subject to Newton’s laws could be so complex as to defy com-
plete understanding. This realization led to the development of the modern theory of
nonlinear dynamics and the discovery of chaotic behaviour in simple low-dimensional
systems. Indeed today, the Solar System still manages to provide surprises, such as
the collision of comet Shoemaker{Levy 9 with Jupiter and the sudden appearance
of comet Hale{Bopp after 4000 years. Furthermore, even with our powerful compu-
tational facilities we still cannot give a detailed description of the dynamics of the
entire asteroid belt, or entirely agree on the mechanisms that created the rings of
Saturn.

This example illustrates the fundamental role that complexity plays in science, and
the importance of the interplay between observation and theory. It highlights how
an appropriate theoretical framework can lead to a simple description of apparently
complex observations, but also how even simple and well-understood mechanisms can
lead to behaviour that even after centuries of study is not completely understood.
However, this example also runs the danger of being deceptively over-simplistic.
The interactions underlying many of the most interesting and practically relevant
problems today are often an order of magnitude more complicated, and several orders
less well understood, than those governing the motion of the Solar System. Thus,
when attempting to study the nervous and immune systems, analyse the stability of
ecosystems or the climate, or seek to e¯ ciently control transport, telecommunication
or energy supply networks, we are perhaps not in much better a position than the
 rst human staring up with awe and bewilderment at the night sky.

This century has seen the formulation of a number of novel mathematical and com-
putational frameworks for the study, characterization and control of such complex
phenomena. In order to be of any relevance to practical problems, it is important
that such theoretical advances are closely related to observed data. In particular, it
is essential to understand how much information about an unknown system one can
hope to recover from observations.

This paper is concerned with two aspects of this fundamental problem. Firstly, note
that the vast majority of theoretical analysis of complex behaviour assumes that we
have an accurate model of a system and that we know the variables that uniquely
determine its state. In principle, the application of such a theory to real problems
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requires the simultaneous measurement of all these variables. Unfortunately, this is
rarely feasible in practice, particularly in the real world (as opposed to the laboratory
bench). Even in the simple example of the Solar System, introduced above, it is
problematical. Thus we know that a proper description of the dynamics requires all
three components of both the position and the velocity of each body in the system.
Throughout much of history we had no direct method of observing the instantaneous
velocity of a planet, or our distance from it, and had to be content with the two
components of its position projected onto the sky. Only recently, with the advent of
laser and radar techniques, have we been able to measure all the required variables
directly. Furthermore, even today, should we wish to incorporate all the asteroids
in our model, we would have great di¯ culty in observing all their positions and
velocities simultaneously! In many other problems, one will not even know what the
important variables are.

Often, therefore, we are limited to making a sequence of measurements of one or
more observables, such as components of the position of a few planets, the popu-
lation of a number of di¬erent species in a given ecosystem, the air temperature
and pressure at a  nite number of geographical locations, or the density of tra¯ c
at several positions on a motorway. The relationship between such observations and
the state of the system is often uncertain. It is therefore not immediately obvious
how relevant theoretical models of complex behaviour are to the analysis of real
systems.

Remarkably, over the last two decades it has come to be realized that in many
cases one can reconstruct an unknown system from a sequence of measurements of
just a single observable. This can result in relatively simple descriptions of apparently
complex datasets and has stimulated a variety of applications in  elds ranging from
®uid dynamics, through electrical engineering to biology, medicine and economics.
It has led to the development of novel algorithms that can characterize, predict and
manipulate a system on the basis of observed data. Similar concepts have appeared in
control theory, and, more recently, in computer science, with applications as diverse
as speech recognition and data compression. The  rst half of the paper will describe
these ideas and some of the ways in which they can be applied.

Unfortunately, despite the obvious success of these techniques, the theoretical
framework on which they are based is rather limited and, strictly speaking, fails to
encompass any system in the real world. This is rather unsatisfactory, since it means
that all the algorithms motivated by this framework are operating in circumstances
beyond its scope. As a result, we have little understanding of what such methods are
actually doing, what their fundamental limits are, and how much information they
actually preserve. These considerations have led to a number of recent extensions of
this framework to systems closer to those encountered in the real world. These are
outlined in the latter part of the paper.

However, even these generalizations are con ned to relatively simple systems whose
behaviour is governed by only a few important variables. As far as we are aware, there
is still no systematic approach to the observation of genuinely complex behaviour.
We shall conclude the paper by arguing that this may be due to fundamental limits
imposed by the process of observation, and that for many complex phenomena there
is just no way of validating a proposed model against measured data. This suggests
that the best we may be able to do in such situations is to explain as much as
possible of the observed phenomenon by a relatively simple model, and attribute the
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remainder to random e¬ects, which we do not attempt to describe in detail. At least
in some idealized examples, such an approach of observing complexity but seeing
only simplicity can work surprisingly well.

2. Complex systems and deterministic dynamics

Today, in many scienti c circles the term `complexity’ has acquired a speci c techni-
cal meaning. In this paper, however, we want to use the term `complex’ in a manner
consistent with its everyday usage, rather than adopt any precise technical de nition.
By a complex system, we shall thus simply mean one that exhibits either structure
or behaviour that is complicated to describe, to predict or to control. Within this
context, we shall be led to focus largely on systems with some non-trivial dynami-
cal evolution. Most complex systems of interest fall into this category. Furthermore,
even when one encounters complex static patterns, these are almost always gener-
ated by some dynamical process that one has to understand in order to analyse their
properties.

We shall also use a very broad notion of a dynamical system, and use this term
to simply mean any system whose state changes (or potentially could change) with
time. Initially, however, we shall concentrate on systems that are deterministic and
autonomous (that is independent of any external events), since, until recently, this
has been the setting for the ideas that we explore in this paper. This will allow us
to present these ideas in their simplest possible form. Of course, all real systems are
subject to at least some noise, and many are a¬ected by external perturbations or
inputs. We shall return to these later in the paper.

We shall denote the state of our system by the symbol x and the space of all such
possible states as X (called, for obvious reasons, the state space). Often the state will
be a vector x = (v1; v2; : : : ; vm), with each component vi representing the value of
some property of the system, such as the position or velocity of a particular planet,
the voltage or current at a particular point in an electronic circuit, the population
of some species in an ecosystem, the price of a particular commodity, etc.

The dynamical evolution of our system is de ned by a rule that given the current
state of the system determines the state some speci ed time in the future. Mathe-
matically, this is described by a function f from the state space to itself, such that
if the system is in state x now, it will be in state f(x) a time later. It will then be
in state f(f(x)) after a time 2 , state f(f(f(x))) after a time 3 , and so on. If we
use the notation xn to mean the state of the system at time n , we get a sequence
of states x0; x1; : : : ; xn; : : : , mapping out the evolution of our system through time,
with xn + 1 = f(xn).

Many systems, of course, do not evolve in discrete time-steps, so this may be
considered a rather restricted framework. However, we shall be largely concerned
with observation, and any practical data-gathering mechanism can only operate at
discrete times. Hence, even if the system has continuous time evolution, we can only
observe a sequence of discrete snapshots, much as a video camera actually records a
sequence of still images. Thus, in the example of the Solar System described above,
we would typically only be interested in the position of the planets at a  xed time
on successive nights, and the function f would take the positions and velocities on
one night to those on the next.
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3. Observing deterministic dynamical systems

Historically, most of the theory of such dynamical systems has been carried out under
the assumption that the state space, X , and the function f are known. While this is
the case in the above example of the Solar System, there are many other problems,
particularly in biology and the social sciences, where we only have the sketchiest
idea of the variables that determine the behaviour of the system (i.e. v1; v2; : : : ; vm)
and the interactions between them (i.e. f). Furthermore, even when we do possess
such knowledge, the application of most nonlinear dynamics techniques requires the
simultaneous observation of all the variables v1; v2; : : : ; vm. As already indicated in
x 1, this is di¯ cult even for a system as well understood as the motion of the planets.
When we turn to problems in biology or the social sciences, there is little hope of
carrying out the required measurements. A typical example is given by an ecosystem.
We rarely know which species need to be incorporated in an accurate description of
a particular ecological system, and even more rarely can we quantify the interactions
between them. However, even if we could build a realistic model, we are very unlikely
to be able to measure the populations of all the relevant species, and any other
necessary variables (such as nutrient levels or carbon dioxide concentrations). There
is thus little chance of ever knowing, let alone measuring, all the state variables in
this system.

Such examples illustrate that usually all that we can expect is to make a sequence
of repeated measurements of one or more observables. These may be some subset
of the state variables, but more generally will be some arbitrary function ’(x) of
the state x. In the simplest case of a single observable, ’(x) will just be a number,
and the sequence of observed quantities ’(x0); ’(x1); : : : ; ’(xn); : : : , will form a so-
called scalar time-series. In the case of the above examples, this might represent a
sequence of measurements of the angle above the horizon of Jupiter, or the number
of Canadian lynx pelts o¬ered for sale by trappers in the Mackenzie River district
in successive months. The latter demonstrates why we want to consider an arbitrary
measurement function ’, rather than just assuming that we are observing one of the
state variables: we cannot hope to directly observe the total population of lynx, but
can reasonably assume that the numbers trapped are some function of this.

Increasingly, we are in the position of being able to measure several observables
simultaneously. We shall discuss this in a subsequent section. For the moment, how-
ever, we shall restrict ourselves to the case of a scalar observable, since this allows us
to present the fundamental ideas in their simplest possible setting. Graphically, it is
easiest to illustrate the observation procedure in a simulated system on a computer.
We do this here with the well-known Lorenz equations. The state space of these
consists of three variables (v1; v2; v3) whose evolution is governed by the di¬erential
equations

_v1 = 10(v2 v1);

_v2 = v1v3 + 28v1 v2;

_v3 = v1v2
8
3
v3:

Here, a dot over a variable represents its rate of change, so these equations relate
the direction and speed of the variables (left-hand side) to functions of their present
values (right-hand side). By following a trajectory generated by this prescription,
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Figure 1. Time-series from Lorenz equations.

and sampling at equal time intervals, we obtain a dynamical system of the kind
described above.

The Lorenz system is one of the classic examples of chaotic dynamics, derived by
the meteorologist E. Lorenz (1963) as a simple caricature of ®uid convection, and,
hence, in some sense, of large weather systems. Despite their apparent simplicity,
these equations have helped to provide the motivation for some of the most funda-
mental developments in the subject over the past four decades.

These equations illustrate the di¯ culties we encounter in trying to characterize
complexity, and the way in which the process of observation can a¬ect such char-
acterization. Thus, the equations written as above look very innocuous: only three
variables v1, v2 and v3, and only two simple nonlinear terms ( v1v3 and v1v2 in the
second and third equations, respectively). If we were told that a real system was
governed by such equations, we would be tempted to say that it must be a sim-
ple system! This would certainly have been the accepted opinion of scientists and
engineers until at least the 1960s. Indeed, in writing these equations down, Lorenz
was not looking for anything complex, and believed that at most they would exhibit
simple periodic oscillations.

Much to his surprise, when Lorenz integrated them on a computer and plotted
one of the variables against time, he obtained a time-series like that in  gure 1:
far from periodic, and far from simple! However, after careful checking, he became
convinced that he was seeing a genuine phenomenon, and one of the major steps in
the development of chaotic dynamics was made.

It is now well known that even the simplest and most innocent-looking nonlinear
systems can lead to complex-looking and apparently unpredictable behaviour, and
this phenomenon is called chaos. Many of the mechanisms underlying this are now
well understood, though it has to be said that even after 35 years of concerted e¬ort
there are fundamental properties of the Lorenz equations that still defy complete
analysis.

The time-series in  gure 1 was obtained by sampling the v1 variable at regular
time-intervals. In the context of our framework above, this corresponds to observing
the system using the observable ’(v1; v2; v3) = v1. This produces a complex and
irregular pattern, and, as we shall see, is not the ideal viewpoint from which to
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state space time-series

observation

Figure 2. State space and time-series views of the Lorenz system.

study these equations. If, instead, we plot all three variables (v1; v2; v3) as vectors
in a three-dimensional state space, we  nd that the system quickly approaches and
settles on a complicated set shown on the left in  gure 2, called the Lorenz attractor
(actually, this is a projection of this object onto the two-dimensional page). While
still quite intricate, it displays far more apparent structure than the time-series plot.
Objects such as this can be investigated using the modern tools of topology and
geometry, and are the focus of much of modern nonlinear dynamics.

The remainder of  gure 2 illustrates the process of observation, using the observ-
able ’(v1; v2; v3) = v1. As we can see, this seems to lead to a loss of structure and
information and an apparent increase in complexity. Certainly, in moving from the
equations, through the state space picture, to the time-series, we have gone from
something apparently simple to something apparently complex. Yet, as already dis-
cussed above, it is precisely the right-hand side of  gure 2 that represents the situa-
tion that we frequently face in the real world. The crucial issue that we therefore wish
to address in this paper is to what extent the apparent complexity of the time-series
picture is real, to what extent does the process of observation lose information, and
to what extent can we reconstruct the left-hand side of  gure 2 from the right-hand
side?

In the context of the Solar System, this would be like trying to study the dynamics
of the whole system by observing just the position of Jupiter. Even in the simpler
case of the Lorenz equations, the state of the system at any given time is speci ed by
three variables v1, v2 and v3, while the time-series consists of only a single variable.
The time-series thus appears to contain far less information than the state space
representation, and the fact that it originates in a deterministic system appears to
be of little use.

4. Reconstructing the state space

Remarkably enough, however, it turns out that these di¯ culties can be overcome,
and, at least in a certain sense, it is possible to `reconstruct’ the state space pic-
ture just from the observed time-series, using the so called method of delays. The
systematic use of this technique was  rst suggested by Packard et al . (1980), who
attributed the basic idea to Ruelle, though a number of other authors around that
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original state space reconstructed state space

Figure 3. Original and reconstructed Lorenz attractors.

zn

Figure 4. The state zn corresponds to a pattern of successive values of the time-series.

time were beginning to experiment with it for speci c systems (see, for example, Ott
et al . 1994).

We illustrate this method in  gure 3, which shows both the original attractor,
drawn with the full knowledge of v1, v2 and v3, and a reconstructed attractor, drawn
using just the v1 time-series. While the two are not identical, they are astonishingly
similar. In fact, the two pictures look like two di¬erent views of the same object,
which, as it turns out, is exactly what they are. It is therefore clear that by passing
to the time-series we have not really lost anything fundamental.

To explain this apparent piece of black magic, let us use the notation ’n = ’(xn)
to denote the time-series. We thus assume that our only knowledge of a dynamical
system is given by the single sequence of numbers ’0; ’1; : : : ; ’n; : : : . In order to
reconstruct the state space and the dynamics of our system, we need to fabricate
something consisting of many variables out of the single variable ’n. The only con-
ceivable way of doing this is to group together a number of successive ’n to create
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zn
zn +1

F

Figure 5. The reconstructed dynamics F , in terms of the time-series.

a vector zn. Thus, let us de ne

zn = (’n d; ’n d + 1; : : : ; ’n 1):

Graphically, the construction of zn is shown in  gure 4, for the case of the Lorenz
system.

Here, d is simply the number of successive values that we choose to take, and
is called the embedding dimension. A variety of algorithms exists for estimating an
appropriate choice (see, for example, Ott et al . 1994; Abarbanel 1995; Kantz &
Schreiber 1998), and, hence, for the moment, we shall simply assume that such a
choice has been made. If we now plot all the vectors derived in this way from the
time-series, we obtain the reconstructed attractor on the right of  gure 3.

In order to understand how and why this procedure works and in what sense
the two sides of  gure 3 are the same, we need to turn to a fundamental theorem
proved nearly 20 years ago by Takens (1980). This provides a proper mathematical
justi cation for the method of delays. It also shows that not only can we recover the
geometric properties of the attractor, as a static object in state space, but we can
also reconstruct the mapping f that governs the dynamics.

5. Reconstructing the dynamics

The state space of our reconstructed dynamical system consists of all the delay vec-
tors constructed as above. We can thus think of the method of delays as `synthesiz-
ing’ this multivariable space out of the single-variable time-series by using successive
observations. We now attempt to de ne a dynamical evolution, which we shall call
F , on this `synthesized’ state space by sending zn to zn + 1, as shown in  gure 5.

The map F thus simply represents a `sliding window’ moving through the time-
series. In doing this, it might appear that we are simply playing mathematical games,
and just de ning objects arbitrarily. In particular, why should F have anything to
do with our original unknown dynamical system f? Before we address that, though,
we need to ask whether F is well-de ned. At  rst, this might seem a nonsensical
question, after all, have we not just de ned F by setting F (zn) = zn + 1? However,
what if the time-series at two di¬erent times yields the same reconstructed vector,
so that zn = zp for some p di¬erent from n. Then, if F is to be a bona  de function,
we need F (zn) = F (zp), that is zn+ 1 = zp + 1. This is far from guaranteed, and is
closely related to the predictability of the time-series, which we shall discuss below.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


50 J. Stark

It also suggests that it would be sensible to enquire about the regularity of F , i.e.
is it continuous, di¬erentiable and so on? In other words, suppose that zn is not
exactly the same as zp, but is very close. Does it then follow that zn + 1 must lie close
to zp + 1?

It turns out that the answer to all of these questions is yes, thanks to the Takens’
embedding theorem (Takens 1980). This guarantees that for typical systems and
observations, and for d su¯ ciently large, the reconstructed dynamics F is well-de ned
and as regular as the original dynamics f . Furthermore, f and F really represent
the same dynamics, in di¬erent `disguises’, or, more precisely, in di¬erent coordinate
systems. Thus, all those properties that are independent of coordinates, and this
includes the vast majority of those considered by modern nonlinear dynamics, will
be the same for both the original and the reconstructed systems.

To explain this better, consider the example of cartographic projections employed
in drawing maps. The surface of the Earth is curved and cannot be represented
on a two-dimensional page without some inevitable distortion. To see this, just try
cutting a tennis ball in half and pressing it ®at. Some stretching or compression
of the rubber is inescapable. Throughout the ages, map makers have, therefore,
evolved a variety of coordinate systems, or projections (see, for example, The Times
Concise Atlas, 5th edn (1991), London, Harper Collins), each designed to minimize
the deformation in some particular way. Thus, conformal projections preserve shape,
equal-area projections preserve area, and equidistant projections preserve distances
from a reference point. However, the more we try to preserve one of these features,
the more we  nd we have to distort the others.

This can be seen, for instance, in the apparent shape and size of, say, Greenland in
the Mercator and Gall projections. Even when drawn on the same scale, straight-line
distances on the page between corresponding points will be drastically di¬erent in
these two projections. On the other hand, the underlying geographical reality is the
same in both cases, and the fundamental properties of Greenland remain independent
of our choice of map. The two maps, therefore, simply provide di¬erent descriptions
for di¬erent purposes.

In exactly the same way, the two halves of  gure 3 are pictures of the same phe-
nomenon, seen through two di¬erent `projections’. From this perspective, Takens’
theorem thus informally says that the method of delays recovers the original dynam-
ical system, but viewed in a new coordinate system. What use is this in practice?
If the coordinate system were known, as it is in cartography, we could, in principle,
transform back into the original coordinates, and reconstruct the original system
exactly. Unfortunately, in the method of delays, no explicit formula for the coor-
dinate transformation is usually available. Nevertheless, the knowledge that such a
transformation exists is su¯ cient in many applications. It gives us a  rm mathe-
matical justi cation for practical algorithms that use observed time-series to char-
acterize the complexity and chaotic nature of a dynamical system. Furthermore,
it guarantees that the time-series is predictable and allows us to manipulate it in
a variety of sophisticated ways. These techniques are described further in the fol-
lowing sections. It must, however, be stressed that all such applications depend on
the availability of adequate amounts of good-quality data. Takens’ theorem only
guarantees reconstruction in a mathematically idealized sense. It cannot possibly
rescue us if we have poor or insu¯ cient data. The actual amount of data, and their
quality, are very dependent on the speci c applications, though some general guide-
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lines exist (see, for example, Ott et al . 1994; Abarbanel 1995; Kantz & Schreiber
1998).

We comment next on two technical aspects of Takens’ theorem. Firstly, it is crucial
that the term `typical’ is included in its statement: the result is certainly not true for
all systems and all observables. Thus, suppose we take ’ to be a constant function.
This might, for instance, correspond to a broken measuring apparatus that just gives
a  xed output. Then the time-series will consist of a repeated sequence of the same
value. No amount of mathematical sophistication can recover any information about
the original system from this. In the actual mathematical formulation of the theorem,
the word `typical’ has a precise technical de nition, which need not concern us here
(see also Sauer et al . 1991).

The second issue is the size of d required to ensure a valid reconstruction. The
theorem in fact states that any d greater than or equal to 2m + 1 will do, where m
is the number of state variables in the original state space X. Unfortunately, in any
real system, m will be unknown, so this condition is of little use. In practice, there
exist many algorithms that allow us to make a reasonable choice (see, for example,
Ott et al . 1994; Abarbanel 1995; Kantz & Schreiber 1998).

Finally, we remark that similar concepts appear in control theory, and, indeed, a
weaker version of Takens’ theorem was proved independently by the control theorist
Aeyels (1981). Related ideas are also beginning to appear in computer science, with
applications as diverse as speech recognition and data compression (A. Mees, personal
communication). Furthermore, the whole question of how much information can be
deduced about a system from observed data is also a central one to statistics. There
is, therefore, an urgent need to relate these various approaches to each other.

6. Characterizing complexity

Let us now consider the  rst of the applications mentioned in x 5. Nonlinear dynam-
ics has developed a variety of measures designed to characterize various aspects of
chaotic systems, including fractal dimensions, Liapunov exponents and entropies. All
of these attempt to quantify the complexity of a system in one way or another. In
particular, they measure, respectively, the number of independent variables govern-
ing the asymptotic dynamics, the loss of predictability with time, and the rate of
production of information (see, for example, Ott et al . 1994). The problem is that
all such measures are de ned in the context of the state space of a system, i.e. on
the left-hand side of  gure 3. A priori, it is therefore not clear how they can be used
when the only information that we possess is an observed time-series.

Fortunately, all of these characteristic quantities are independent of the coordinate
system in which they are computed. Takens’ theorem thus guarantees that if we
calculate them in the reconstructed state space, we will get the same answer as in
the original state space. Thus, for example, the fractal dimension of the two di¬erent
pictures of the Lorenz attractor in  gure 3 is the same. Recall, however, that the one
on the right-hand side was drawn using only the observed time-series data. Hence,
provided that this time-series is su¯ ciently long, and of su¯ ciently high quality,
we can use it to compute the fractal dimension of the original attractor. The same
holds for the other invariants mentioned above, and, thus, Takens’ theorem provides
a powerful framework for the characterization of chaotic dynamical systems from
observed data.
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zr zp zn

Figure 6. Forecasting by analogy: patterns zr and zp are a good match to zn ,
and the values following them are a good estimate of the next value after zn .

7. Prediction

Although signi cant, the ability to characterize complex systems is often only a small
part of our goal. In many practical applications, we need to go much further and
predict, control and otherwise manipulate such systems. Once again, Takens’ theorem
comes to the rescue. Recall that this gives us a function F such that F (zn) = zn + 1.
Using the de nition of zn and zn + 1 in terms of the time-series gives

(’n d; ’n d + 1; : : : ; ’n 1)
F! (’n d + 1; ’n d + 2; : : : ; ’n):

This is, in fact, just a representation of  gure 5 in mathematical symbols! Now,
observe that F consists of d components, that is F (zn) = (F1(zn); : : : ; Fd(zn)), with
Fi(zn) = ’n d + i. Writing this as Fi(’n d; ’n d + 1; : : : ; ’n 1) = ’n d + i, we see that
the  rst d 1 components F1; : : : ; Fd 1 are trivial and simply consist of copying one
of the arguments of Fi. The only non-trivial component of F is, thus, the last one,
Fd, which, for convenience, we will denote by G, so that

’n = G(’n d; ’n d + 1; : : : ; ’n 1): (7.1)

In other words, any given element of the time-series is determined by the preceding
d values. Thus, in principle, the time-series is entirely predictable. In practice, there
is a minor stumbling block: we will generally not know G explicitly. However, if
we have a su¯ ciently large sample of the time-series in the past, we can use one
of a plethora of available nonlinear function- tting methods to estimate G. We can
then use such an estimate from that point on for forecasting purposes. Possible  tting
techniques include neural networks, radial basis functions, Gaussian processes, kernel
estimators, local polynomial  ts, and many others (see, for example, Ott et al . 1994;
Kantz & Schreiber 1998).

It may help to understand equation (7.1), and this approach to prediction, by
considering the intuitive notion of `forecasting by analogy’. It is quite natural to
attempt to predict a time-series by searching for common patterns in its past history.
This is a common technique for everyone from a casino gambler to a stock-market
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analyst, and was, essentially, the method used by astronomers until Newton’s time.
Thus, suppose that we currently see the pattern zn = (’n d; ’n d + 1; : : : ; ’n 1) of
d successive values. We search through the past history of the time-series and  nd
a similar pattern in the past, such as zp = (’p d; ’p d + 1; : : : ; ’p 1) in  gure 6. A
reasonable prediction for the next value, ’n, is then the value, ’p, that followed
(’p d; ’p d + 1; : : : ; ’p 1). If we have more matching patterns, such as zr in  gure 6,
we can use any of these, or take a suitable average. Takens’ theorem justi es this
intuitively appealing idea, and gives it a precise mathematical formulation.

If we want to predict further into the future than one time-step, we can either
iterate (7.1) for however many steps we want, or attempt a direct  t of ’n + i as a
function of ’n d; ’n d + 1; : : : ; ’n 1. However, we must realize that if the underlying
dynamics is chaotic, we will be limited in how far ahead we can predict. This is
because any real data will be subject to at least some noise and any real function  t
will not be exact. The resulting errors will be ampli ed by a chaotic process leading
to a rapid increase in forecasting errors the further ahead we attempt to predict.

8. Other applications

The ability to construct a predictive model from observed data opens up a range of
other possibilities. Some of the most exciting are novel algorithms for noise reduc-
tion and signal detection or separation. In real life, we rarely encounter a perfect
time-series obtained from a completely deterministic system. Instead, we are often
presented with a mixture  n = ’n + "n of a dynamical time-series ’n and some
other signal "n. The latter may represent noise, in which case we want to remove
it from  n, or it may be a signal that we wish to detect, in which case we want
to extract it from  n and discard ’n. An example of the latter might be a foetal
electrocardiogram (ECG) signal "n masked by a much stronger maternal signal ’n

(see, for example, Schreiber & Kaplan (1996); in this particular problem, "n is also
deterministic, but with signi cantly di¬erent dynamics, which is all that matters).
In both cases, the mathematical issue that we face amounts to separating  n into
its two components ’n and "n.

Starting with the pioneering work of Kostelich & Yorke (1988), a number of algo-
rithms have appeared that can, under appropriate circumstances, perform such a
separation (see, for example, Ott et al . 1994). Ultimately, these all rely on the abil-
ity to make predictions, and, hence, rely on Takens’ theorem. Thus if "n is absent,
equation (7.1) will give good predictions, while if "n is large, then we expect our
prediction errors also to be large. These errors can be further processed to recover
the actual form of "n.

The observant reader might point out that this is all very well if we know G, or
have a `clean’ sample of ’n from which we can estimate it. But what if the only
data available are the contaminated time-series  n, as in the foetal ECG example?
Fortunately, it turns out that as long as "n is not too large relative to ’n, we can often
still estimate G from  n (see, for example, Davies & Stark 1994). This allows these
ideas to be applied increasingly to practical signal-processing problems, potentially
achieving results far superior to those possible using conventional signal-processing
approaches.

A closely related problem, which has received somewhat less attention, yet, per-
haps, is of far greater practical signi cance, is that of detecting shifts in the under-
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lying dynamical system. Thus, suppose that this system is slowly undergoing some
change, or perhaps is subject to some sudden minor variation that presages a more
dramatic and perhaps even catastrophic later event. Can we recognize this simply by
observing the time-series? In other words, in terms of real applications, what can we
deduce about fundamental changes to the global climate by observing a time-series of
the temperature? What can we learn about the possible damage to an ecosystem by
observing a few species? In entirely di¬erent contexts, can we identify subtle dynam-
ical changes in an ECG that herald a heart attack? Can we predict the imminent
collapse of an electricity supply network by monitoring subtle changes in voltage
variations?

Attempts at answering these kinds of questions in the context of nonlinear dynam-
ics have initially been made using some of the characterizations described earlier,
such as fractal dimensions. The basic idea is to compute these quantities from di¬er-
ent segments of the time-series, and if the resulting values are signi cantly di¬erent
one can conclude, with some con dence, that the underlying dynamics has changed.
Unfortunately, this approach has met with only limited success, due to the di¯ culty
of computing the necessary values from limited amounts of data. It should be pos-
sible to derive more sensitive techniques based on prediction and signal separation,
but, hitherto, there has been little systematic development along these lines. Very
similar methods can also be used to determine whether two time-series are obtained
from two di¬erent observables of the same dynamical systems, or whether they are
generated by two completely di¬erent systems. This again may have some potentially
interesting applications, which need further exploration.

Finally, another area that has received considerable attention in the last decade
is that of `chaotic control’. Introduced by Ott et al . (1990), it relies on the extreme
sensitivity of chaotic systems to initial conditions to control such systems using only
very small control signals. Intuitively, this is a very appealing approach to the control
of complex systems. A similar idea was already used in the early 1980s to steer the
ICE spacecraft to a rendezvous with the comet Giacobini{Zinober using the least
possible amount of fuel (Farquhar et al . 1985). In order to implement this kind of
technique, one needs a state space model of the system to be controlled. While this
is not a problem in the case of spacecraft, in most other practical applications such a
model is not directly available. Thus, once again, one has to rely on Takens’ theorem
to provide a reconstruction. In the last decade, a variety of practical algorithms
adopting this approach has been successfully demonstrated in applications ranging
from lasers to cardiac rhythms (see, for example, Ott et al . 1994).

9. Noise and external in° uences

The last few sections have demonstrated the fundamental signi cance of Takens’
theorem to a wide range of applications. However, as already indicated, this the-
orem really only applies to a highly idealized class of mathematical models. More
speci cally, it assumes that the system and its observations are una¬ected by noise
or by outside events. Few real systems satisfy such conditions. Despite this, tech-
niques based on the theorem have successfully been applied to many real prob-
lems, in other words, in circumstances where the theorem strictly speaking is not
valid. From a practical point of view, this might seem to be unimportant. After
all, who cares whether or not the hypotheses of an abstract mathematical theo-
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rem are satis ed, as long as the methods motivated by it work in practice? How-
ever, in the absence of a theoretical framework relevant to realistic systems, we
have little insight into how and why the method of delays actually works and
how much information it preserves. Furthermore, we do not know what its fun-
damental limits are and, hence, when it is likely to fail. Finally, in those applica-
tions where it does fail, we have little to guide us in how it might be successfully
extended.

Fortunately, it turns out to be possible to generalize Takens’ result to a much wider
class of systems (Stark et al . 1997; Stark 1999), including both noisy systems and
systems subject to external e¬ects. Such e¬ects can be deterministic, or essentially
unpredictable. The former include deliberate periodic forcing as found in many lab-
oratory experiments, or the inevitable seasonal forcing of measles epidemics or many
ecosystems. The latter applies particularly to man-made systems: thus, in signal pro-
cessing, the main role of  lters is to process arbitrary input sequences; while systems
such as telecommunications, tra¯ c and energy distribution networks or stock mar-
kets and other  nancial institutions are subject to a variety of more-or-less arbitrary
irregular shocks. This class of systems was named input{output systems by Casdagli
(1992), who conjectured that a generalized form of Takens’ theorem applies in the
case where the input is a single variable time-series.

All of the above cases can be uni ed in a single mathematical framework. In
particular, a very wide class of noisy systems can be thought of as deterministic
systems driven by some random process. A particularly convenient way of presenting
this framework is to make the function f that speci es the dynamical evolution
depend on a vector of parameters !, and to make a new choice !n of these parameters
at each time-step n. The state of the system, xn, thus evolves according to

xn + 1 = f(xn; !n):

This is in contrast to the standard framework, where we had xn + 1 = f(xn). Often, it
is helpful to write f!n

(xn) instead of f(xn; !n). This suggests the interpretation that
instead of applying the same function f every time, we choose a di¬erent function
f!n

at each time-step. Both points of view are equally valid, and equally useful in
di¬erent contexts. In terms of applications, !n might, for instance, denote the time
of year in a model of a measles epidemic, or represent several million TV viewers
switching on a kettle immediately after a favourite TV programme in a model of
an electrical distribution network, or perhaps be a binary sequence encoding some
message being processed by an electronic  lter. The observed time-series is derived
in exactly the same way from xn as in the deterministic case, that is ’n = ’(xn)
(more generally, we might also incorporate noise or forcing on the observations, but
this makes little fundamental di¬erence).

Remarkably, it is possible to extend Takens’ theorem to time-series derived in this
way, and, hence, to reconstruct the original dynamics from the observed data. The
most di¯ cult case is, strangely enough, that of deterministic forcing, that is where
!n is itself generated by some deterministic forcing system (see periodic forcing
above). In such a case, one reconstructs both the forced and the forcing dynamics
simultaneously (Stark 1999). This gives a time-series model of the form (7.1). On
the other hand, when !n is either a noise sequence, or an arbitrary input sequence,
we make no e¬ort to reconstruct !n, since such an attempt would automatically be
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doomed to failure. The reconstructed dynamics takes the form

zn+ 1 = F (zn; !n d; !n d + 1; : : : ; !n 1);

so that whereas f depends only on the current input !n, the reconstructed map F
involves a segment of its past history (Stark et al . 1997). This gives a time-series
model of the form

’n = G(’n d; ’n d + 1; : : : ; ’n 1; !n d; !n d + 1; : : : ; !n 1): (9.1)

Where the input sequence is known, this provides an explicit method for incorpo-
rating it in the modelling procedure. The practical applications of this are only just
beginning to be explored (see, for example, Richter & Schreiber 1998). One that is
worth highlighting is that of irregular sampling. This is impossible for the standard
framework to handle, while here we simply let !n be the time between successive
observations, and include these in the estimation of G, as in equation (9.1).

Where the input sequence is unknown, e.g. when it represents noise, it has to
be estimated from the data. Although statistical methods exist for doing this, they
are far from simple, and a great deal of further work in this direction is required.
Nevertheless, at least the theorem presented here provides a starting point, and a
mathematical justi cation for attempting such an enterprise.

10. Multivariable observations

Up until now, we have only discussed scalar time-series, produced by a single vari-
able observable. In many applications, however, we are increasingly able to mea-
sure several observables simultaneously. In such a case, ’(x) becomes a vector and
’(x0); ’(x1); : : : ; ’(xn); : : : , is then a multivariable time-series. In the context of our
earlier examples, the components of ’(xn) might, for instance, specify the positions
of a number of di¬erent planets, or the population of a number of di¬erent species,
at each speci ed time. A more extreme case would be a digital video recording of
some complex process, where the components of ’(xn) would be the intensities of
the primary colours in each of the pixels making up the nth frame.

The extension of Takens’ theorem to multiple observables poses few problems,
though as far as we are aware, an explicit statement and proof of such a theorem
has never been published. Nevertheless, it is clear to anyone familiar with the stan-
dard theorem that the modi cations required are minimal. The same holds for the
generalizations presented in x 9. In fact, increasing the number of independent obser-
vations actually makes life simpler, to the extent that if we have more than 2m + 1
independent observables, there is no need to resort to any delays and we can guar-
antee that reconstruction is possible by the Whitney embedding theorem, a classical
result in di¬erential topology. Furthermore, if we have a su¯ cient number of inde-
pendent measurement functions, we can even reconstruct the noise !n (Muldoon et
al . 1998).

11. Spatio-temporal systems

More serious issues arise, however, when we consider more complex dynamical sys-
tems, where, intuitively, it seems that multiple observations might play a more sig-
ni cant role. A particularly important class is that of spatio-temporal systems. By
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this, we mean systems in which spatially distinct parts can evolve in time in distinct
ways. We can thus think of such systems as consisting of many local dynamical sys-
tems, one at each spatial location, coupled together into one large system. Classically,
such systems would be modelled by partial di¬erential equations, such as the Navier{
Stokes equation for ®uid ®ow or reaction{di¬usion equations for pattern formation in
a reacting medium. In such models, space is represented as a continuum. Increasingly,
however, there is interest in using discrete spatial locations. If these are arranged in
a regular structure, one obtains coupled-map lattices and related systems, while in
other cases, it may be more appropriate to use arbitrary arrangements leading to
various kinds of networks (e.g. in transport or telecommunication systems).

The spatial aspect of these systems dramatically increases their structural com-
plexity compared with the localized dynamical systems that we have been consider-
ing up to now. This leads to a much richer repertoire of possible behaviour, though
not necessarily always to more complex behaviour. It also provides the ®exibility
to model a much larger variety of real systems, so that spatio-temporal systems
are widely encountered in many applications, such as ®uid ®ow, biological pat-
tern formation, neuroscience, ecology, road and telecommunication tra¯ c, and many
others.

In some cases (e.g. weather prediction), there is a reasonable understanding of the
underlying deterministic mechanisms governing the evolution of the system, and we
can use this to construct an a priori state space model to which observations can
be  tted. In many other situations, particularly in the biological and social sciences,
this is not possible and we need to reconstruct the unknown dynamics from observed
data in a similar fashion to that described above for localized systems.

Although Takens’ theorem implies that in principle it might be possible to do this
using a su¯ cient number of delays of a single observable, common sense suggests that
this is unlikely to be feasible in practice. In particular, the amount and quality of data
obtained by observing a single spatial location will almost certainly be insu¯ cient
to reconstruct the behaviour of the whole spatially extended system. Any serious
approach to the reconstruction of spatio-temporal systems will, therefore, inevitably
use multiple measurements, distributed in an appropriate way around the system.
Delay reconstruction techniques are increasingly being applied to such data (see, for
example, Muldoon et al . 1994; Little et al . 1996; Rand & Wilson 1997; Àrstavik &
Stark 1998; Cao et al . 1998). However, since there is almost no theoretical framework
in this case, there is little understanding of the basic principles of operation of these
methods, of the properties of the underlying system that they preserve, or of the
theoretical limits to their performance. Developing the necessary theory to address
these issues is a major undertaking that raises a wide variety of both mathematical
and practical issues.

Perhaps the most important of these is the question of what exactly we aim to
reconstruct. The standard embedding approach requires the system that we wish to
reconstruct to be autonomous, i.e. free of any outside in®uences. Since, in a non-
trivial spatio-temporal system, the local subsystems interact with each other, the
conventional framework obliges us to reconstruct the whole spatially extended sys-
tem. This has a serious drawback, however. The state space of the whole system
is typically very large and the dynamics depends on a huge number of variables.
Attempting to reconstruct this results in extremely complex models and a large
embedding dimension d. Such models typically do not perform well in practice; in
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particular, they su¬er from the so-called `curse of high dimensionality’. This refers
to the fact that as d increases, we need more and more data to adequately sample
the reconstructed state space.

This can be best illustrated in the context of forecasting by analogy, as in  gure 6.
If d is small, and we are given a particular current pattern zn, then it is likely that
we will  nd many similar patterns in our historical dataset. We should thus be able
to make good predictions. On the other hand, suppose d is large, say of the order of
100, which is not unreasonable for a typical spatio-temporal system. Then, given a
particular pattern zn (which now consists of 100 successive values of the time-series),
it is highly unlikely that we shall  nd a close match in our dataset. We thus have
nothing on which to base our forecasts. Essentially the same problem arises whatever
prediction method we use, no matter how clever. Thus, for instance, Àrstavik &
Stark (1998)  nd that the best predictions are obtained for a very small embedding
dimension (d = 4). Increasing either the number of measurements functions, or the
number of delays, gives no advantage. In other words, when we are restricted to using
observed data, the best model for the data may be one that is much simpler than
the system that originally generated the data.

To resolve this apparent paradox, note that in most spatio-temporal systems a
given subsystem will be in®uenced far more strongly by some subsystems than by
others (typically, nearby subsystems will have a greater e¬ect; see, for example, Ruelle
(1982) and Carretero-Gonz´alez et al . (1999a)). We may thus be able to make reason-
able predictions of the behaviour in a given region by only considering the dynamics
in that region, and ignoring the rest of the system. Indeed, it turns out that in some
examples if we only observe one locality we cannot distinguish a large extended
system from a small local system driven by a simple random process (Carretero-
Gonz´alez et al . 1999b). In such a case, we can replace the e¬ect of all the remote
components of a spatio-temporal system by noise. This suggests that some of the
theoretical models being developed to study spatio-temporal behaviour may be too
complex to be used in the context of observed data. In particular, we may be unable
to observe the di¬erence between a complex deterministic model and a much sim-
pler noisy model. Hence, although, in principle, the deterministic model is capable of
making perfect predictions (i.e. in the case of an in nite amount of data), in practice,
the simple model may be preferable.

At least informally, we can use the stochastic version of Takens’ theorem described
above to provide a reconstruction framework for the noisy local system. The variable
!n now represents those parts of the system we choose not to reconstruct. A crucial
question in such an approach is how to determine the size of the local system, in
other words, what behaviour to assign to the deterministic dynamics xn and what to
assign to the random process !n? This exempli es the trade-o¬ between simplicity
and complexity that lies at the heart of the issues examined in this section. If we
make the local system too small, it fails to capture the phenomena we are interested
in; if we make it too large, we run into the problems described above.

Finally, we consider how to approach the problem of predicting the evolution of the
whole system, rather than just a localized part. If we attempt to do this using a single
large model, we encounter the `curse of high dimensionality’, just as above. A possible
alternative, hitherto untried, is to predict each localized subsystem independently,
using the ideas outlined above. In many cases, we have reason to suppose that the
subsystems at each locality should be identical, in which case we can  t a single
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model using observations from all the di¬erent locations. This has the advantage of
substantially increasing the amount of data available to  t the model.

Much remains to be done in order to make these ideas rigorous, to explore their
practical rami cations, and to develop and evaluate the resulting algorithms. We
believe, however, that even the most tentative results in these directions would be
extremely valuable, greatly enhancing our ability to devise simple models for complex
data.

12. Conclusion: seeing simplicity

Nonlinear dynamical systems provide a broad framework for the analysis of many
complex phenomena, ranging from simple electrical circuits to whole ecosystems.
Often, the structure of such systems is far simpler than the observed data they
can generate. In practice, it is rare to have direct access to such structure, and our
knowledge of a system is essentially restricted to the observed data. This may make
some phenomena appear more complicated than they really are. Takens’ theorem
allows us to reconstruct the structure of a system from repeated observations, and,
hence, o¬ers the possibility of  nding simple explanations for apparently complicated
behaviour. We have outlined this theorem, its more important consequences, and
described some of its range of applications.

Recent extensions of the theorem allow us to incorporate noise and other external
in®uences in our model. At least informally, these allow us to apportion observed
behaviour between a deterministic component and a random component. We have
argued that if the deterministic part is too complex, then it cannot be distinguished
using a reasonable amount of measured data. This suggests that no matter how
complicated a system is, the process of observation may restrict us to seeing only a
limited part of its complexity, the remainder inescapably appearing as random noise.
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